Goulib.graph module

efficient Euclidian Graphs for networkx and related algorithms

requires:
optional:
  • scipy for delauney triangulation
  • rtree for faster GeoGraph algorithms
class Goulib.graph.index[source]

Bases: object

class Property[source]

Bases: object

set_dimension(n)[source]
class Index(properties)[source]

Bases: dict

fallback for rtree.index

__init__(properties)[source]
count(ignored)[source]
insert(k, p, _)[source]
delete(k, _)[source]
nearest(p, num_results, objects='raw')[source]

very inefficient, but remember it’s a fallback...

class Goulib.graph.AGraph[source]

Bases: object

Goulib.graph.to_networkx_graph(data, create_using=None, multigraph_input=False)[source]

Make a NetworkX graph from a known data structure. enhances networkx.convert.to_networkx_graph :param data: any type handled by convert.to_networkx_graph, plus: * scipy.spatial.qhull.Delaunay to enable building a graph from a delauney triangulation

If create_using is a :class:`GeoGraph`and data is a Graph where nodes have a ‘pos’ attribute, then this attribute will be used to rename nodes as (x,y,...) tuples suitable for GeoGraph.

class Goulib.graph.GeoGraph(data=None, nodes=None, **kwargs)[source]

Bases: Goulib.graph._Geo, networkx.classes.multigraph.MultiGraph

Undirected graph with nodes positions can be set to non multiedges anytime with attribute multi=False

Parameters:
  • data – see to_networkx_graph() for valid types
  • kwargs – other parameters will be copied as attributes, especially:
__init__(data=None, nodes=None, **kwargs)[source]
Parameters:
  • data – see to_networkx_graph() for valid types
  • kwargs – other parameters will be copied as attributes, especially:
class Goulib.graph.DiGraph(data=None, nodes=None, **kwargs)[source]

Bases: Goulib.graph._Geo, networkx.classes.multidigraph.MultiDiGraph

directed graph with nodes positions can be set to non multiedges anytime with attribute multi=False

Parameters:
  • data – see to_networkx_graph() for valid types
  • kwargs – other parameters will be copied as attributes, especially:
__init__(data=None, nodes=None, **kwargs)[source]
Parameters:
  • data – see to_networkx_graph() for valid types
  • kwargs – other parameters will be copied as attributes, especially:
Goulib.graph.figure(g, box=None, **kwargs)[source]
Parameters:
  • g – _Geo derived Graph
  • box – optional interval.Box if g has no box
Returns:

matplotlib axis suitable for drawing graph g

Goulib.graph.draw_networkx(g, pos=None, **kwargs)[source]

improves nx.draw_networkx :param g: NetworkX Graph :param pos: can be either :

  • optional dictionary of (x,y) node positions
  • function of the form lambda node:(x,y) that maps node positions.
  • None. in this case, nodes are directly used as positions if graph is a GeoGraph, otherwise nx.draw_shell is used
Parameters:**kwargs

passed to nx.draw method as described in http://networkx.lanl.gov/reference/generated/networkx.drawing.nx_pylab.draw_networkx.html with one tweak:

  • if edge_color is a function of the form lambda data:color string, it is mapped over all edges
Goulib.graph.to_drawing(g, d=None, edges=[])[source]

draws Graph to a Drawing :param g: Graph :param d: existing Drawing to draw onto, or None to create a new Drawing :param edges: iterable of edges (with data) that will be added, in the same order. By default all edges are drawn :return: Drawing

Graph edges with an ‘entity’ property

Goulib.graph.write_dxf(g, filename)[source]

writes networkx.Graph in .dxf format

Goulib.graph.write_dot(g, filename)[source]
Goulib.graph.to_json(g, **kwargs)[source]
Returns:string JSON representation of a graph
Goulib.graph.write_json(g, filename, **kwargs)[source]

write a JSON file, suitable for D*.js representation

Goulib.graph.read_json(filename, directed=False, multigraph=True, attrs=None)[source]
Goulib.graph.delauney_triangulation(nodes, qhull_options='', incremental=False, **kwargs)[source]

https://en.wikipedia.org/wiki/Delaunay_triangulation :param nodes: _Geo graph or list of (x,y) or (x,y,z) node positions :param qhull_options: string passed to scipy.spatial.Delaunay(), which passes it to Qhull ( http://www.qhull.org/ ) *‘Qt’ ensures all points are connected *‘Qz’ required when nodes lie on a sphere *‘QJ’ solves some singularity situations

Parameters:kwargs – passed to the GeoGraph constructor
Returns:GeoGraph with delauney triangulation between nodes
Goulib.graph.euclidean_minimum_spanning_tree(nodes, **kwargs)[source]
Parameters:nodes – list of (x,y) nodes positions
Returns:GeoGraph with minimum spanning tree between nodes

see https://en.wikipedia.org/wiki/Euclidean_minimum_spanning_tree

Goulib.graph.points_on_sphere(N)[source]

Classes

efficient Euclidian Graphs for networkx and related algorithms

requires:
optional:
  • scipy for delauney triangulation
  • rtree for faster GeoGraph algorithms
class Goulib.graph.index[source]

Bases: object

class Property[source]

Bases: object

set_dimension(n)[source]
__class__

alias of type

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__

Initialize self. See help(type(self)) for accurate signature.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

class Index(properties)[source]

Bases: dict

fallback for rtree.index

__init__(properties)[source]
count(ignored)[source]
insert(k, p, _)[source]
delete(k, _)[source]
nearest(p, num_results, objects='raw')[source]

very inefficient, but remember it’s a fallback...

__class__

alias of type

__contains__()

True if D has a key k, else False.

__delattr__

Implement delattr(self, name).

__delitem__

Delete self[key].

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__getitem__()

x.__getitem__(y) <==> x[y]

__gt__

Return self>value.

__hash__ = None
__iter__

Implement iter(self).

__le__

Return self<=value.

__len__

Return len(self).

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__setitem__

Set self[key] to value.

__sizeof__() → size of D in memory, in bytes
__str__

Return str(self).

clear() → None. Remove all items from D.
copy() → a shallow copy of D
fromkeys()

Returns a new dict with keys from iterable and values equal to value.

get(k[, d]) → D[k] if k in D, else d. d defaults to None.
items() → a set-like object providing a view on D's items
keys() → a set-like object providing a view on D's keys
pop(k[, d]) → v, remove specified key and return the corresponding value.

If key is not found, d is returned if given, otherwise KeyError is raised

popitem() → (k, v), remove and return some (key, value) pair as a

2-tuple; but raise KeyError if D is empty.

setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D
update([E, ]**F) → None. Update D from dict/iterable E and F.

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values() → an object providing a view on D's values
__class__

alias of type

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__

Initialize self. See help(type(self)) for accurate signature.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

class Goulib.graph.AGraph[source]

Bases: object

__class__

alias of type

__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__

Return hash(self).

__init__

Initialize self. See help(type(self)) for accurate signature.

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__

Return str(self).

Goulib.graph.to_networkx_graph(data, create_using=None, multigraph_input=False)[source]

Make a NetworkX graph from a known data structure. enhances networkx.convert.to_networkx_graph :param data: any type handled by convert.to_networkx_graph, plus: * scipy.spatial.qhull.Delaunay to enable building a graph from a delauney triangulation

If create_using is a :class:`GeoGraph`and data is a Graph where nodes have a ‘pos’ attribute, then this attribute will be used to rename nodes as (x,y,...) tuples suitable for GeoGraph.

class Goulib.graph.GeoGraph(data=None, nodes=None, **kwargs)[source]

Bases: Goulib.graph._Geo, networkx.classes.multigraph.MultiGraph

Undirected graph with nodes positions can be set to non multiedges anytime with attribute multi=False

Parameters:
  • data – see to_networkx_graph() for valid types
  • kwargs – other parameters will be copied as attributes, especially:
__init__(data=None, nodes=None, **kwargs)[source]
Parameters:
  • data – see to_networkx_graph() for valid types
  • kwargs – other parameters will be copied as attributes, especially:
__bool__()
Returns:True if graph has at least one node
__class__

alias of type

__contains__(n)

Return True if n is a node, False otherwise. Use: ‘n in G’.

>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> 1 in G
True
__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__(other)
Returns:True if self and other are equal
__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__getitem__(n)

Return a dict of neighbors of node n. Use: ‘G[n]’.

n : node
A node in the graph.
adj_dict : dictionary
The adjacency dictionary for nodes connected to n.

G[n] is the same as G.adj[n] and similar to G.neighbors(n) (which is an iterator over G.adj[n])

>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G[0]
AtlasView({1: {}})
__getstate__()
__gt__

Return self>value.

__hash__ = None
__iter__()

Iterate over the nodes. Use: ‘for n in G’.

niter : iterator
An iterator over all nodes in the graph.
>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [n for n in G]
[0, 1, 2, 3]
>>> list(G)
[0, 1, 2, 3]
__le__

Return self<=value.

__len__()

Return the number of nodes. Use: ‘len(G)’.

nnodes : int
The number of nodes in the graph.
>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> len(G)
4
__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__nonzero__()
Returns:True if graph has at least one node
__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__()
Returns:string representation, used mainly for logging and debugging
add_cycle(nodes, **attr)
add_edge(u, v, key=None, **attr)

add an edge to graph

Returns:edge key
add_edge2(u, v, key=None, **attrs)

add an edge to graph :return: edge data from created or existing edge

add_edges_from(ebunch, **attr)

Add all the edges in ebunch.

ebunch : container of edges

Each edge given in the container will be added to the graph. The edges can be:

  • 2-tuples (u, v) or
  • 3-tuples (u, v, d) for an edge data dict d, or
  • 3-tuples (u, v, k) for not iterable key k, or
  • 4-tuples (u, v, k, d) for an edge with data and key k
attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

A list of edge keys assigned to the edges in ebunch.

add_edge : add a single edge add_weighted_edges_from : convenient way to add weighted edges

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments.

Default keys are generated using the method new_edge_key(). This method can be overridden by subclassing the base class and providing a custom new_edge_key() method.

>>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples
>>> e = zip(range(0, 3), range(1, 4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1, 2), (2, 3)], weight=3)
>>> G.add_edges_from([(3, 4), (1, 4)], label='WN2898')
add_node(p, **attr)

add a node or return one already very close :return (x,y,...) node id

add_nodes_from(nodes, **attr)
add_path(nodes, **attr)
add_star(nodes, **attr)
add_weighted_edges_from(ebunch, weight='weight', **attr)

Add all the weighted edges in ebunch with specified weights.

ebunch : container of edges
Each edge in the container is added to the graph. The edges must be given as 3-tuples (u, v, w) where w is a number.
weight : string, optional (default= ‘weight’)
The attribute name for the edge weights to be added.
attr : keyword arguments, optional (default= no attributes)
Edge attributes to add/update for all edges.

add_edge : add a single edge add_edges_from : add multiple edges

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.

>>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0, 1, 3.0), (1, 2, 7.5)])
adj

Graph adjacency object holding the neighbors of each node.

This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edgekey-data-dict. So G.adj[3][2][0][‘color’] = ‘blue’ sets the color of the edge (3, 2, 0) to “blue”.

Iterating over G.adj behaves like a dict. Useful idioms include for nbr, nbrdict in G.adj[n].items():.

The neighbor information is also provided by subscripting the graph. So for nbr, foovalue in G[node].data(‘foo’, default=1): works.

For directed graphs, G.adj holds outgoing (successor) info.

adjacency()

Return an iterator over (node, adjacency dict) tuples for all nodes.

For directed graphs, only outgoing neighbors/adjacencies are included.

adj_iter : iterator
An iterator over (node, adjacency dictionary) for all nodes in the graph.
>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [(n, nbrdict) for n, nbrdict in G.adjacency()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
adjlist_inner_dict_factory

alias of dict

adjlist_outer_dict_factory

alias of dict

box()
Returns:nodes bounding box as (xmin,ymin,...),(xmax,ymax,...)
box_size()
Returns:(x,y) size
clear()
closest_edges(p, data=False)
Returns:container of edges close to p and distance
closest_nodes(p, n=1, skip=False)

nodes closest to a given position :param p: (x,y) position tuple :param skip: optional bool to skip n itself :return: list of nodes, minimal distance

contiguity(pts)
Returns:int number of points from pts already in graph
copy()
Returns:copy of self graph
degree

A DegreeView for the Graph as G.degree or G.degree().

The node degree is the number of edges adjacent to the node. The weighted node degree is the sum of the edge weights for edges incident to that node.

This object provides an iterator for (node, degree) as well as lookup for the degree for a single node.

nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
weight : string or None, optional (default=None)
The name of an edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

If a single node is requested deg : int

Degree of the node, if a single node is passed as argument.

OR if multiple nodes are requested nd_iter : iterator

The iterator returns two-tuples of (node, degree).
>>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.degree(0) # node 0 with degree 1
1
>>> list(G.degree([0, 1]))
[(0, 1), (1, 2)]
dist(u, v)
Returns:float distance between nodes u and v
draw(**kwargs)

draw graph with default params

edge_attr_dict_factory

alias of dict

edge_key_dict_factory

alias of dict

edge_subgraph(edges)

Returns the subgraph induced by the specified edges.

The induced subgraph contains each edge in edges and each node incident to any one of those edges.

edges : iterable
An iterable of edges in this graph.
G : Graph
An edge-induced subgraph of this graph with the same edge attributes.

The graph, edge, and node attributes in the returned subgraph view are references to the corresponding attributes in the original graph. The view is read-only.

To create a full graph version of the subgraph with its own copy of the edge or node attributes, use:

>>> G.edge_subgraph(edges).copy()  
>>> G = nx.path_graph(5)
>>> H = G.edge_subgraph([(0, 1), (3, 4)])
>>> list(H.nodes)
[0, 1, 3, 4]
>>> list(H.edges)
[(0, 1), (3, 4)]
edges

Return an iterator over the edges.

edges(self, nbunch=None, data=False, keys=False, default=None)

The EdgeView provides set-like operations on the edge-tuples as well as edge attribute lookup. When called, it also provides an EdgeDataView object which allows control of access to edge attributes (but does not provide set-like operations). Hence, G.edges[u, v][‘color’] provides the value of the color attribute for edge (u, v) while for (u, v, c) in G.edges(data=’color’, default=’red’): iterates through all the edges yielding the color attribute.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
data : string or bool, optional (default=False)
The edge attribute returned in 3-tuple (u, v, ddict[data]). If True, return edge attribute dict in 3-tuple (u, v, ddict). If False, return 2-tuple (u, v).
keys : bool, optional (default=False)
If True, return edge keys with each edge.
default : value, optional (default=None)
Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.
edges : MultiEdgeView
A view of edge attributes, usually it iterates over (u, v) (u, v, k) or (u, v, k, d) tuples of edges, but can also be used for attribute lookup as edges[u, v, k][‘foo’].

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

>>> G = nx.MultiGraph()   # or MultiDiGraph
>>> nx.add_path(G, [0, 1, 2])
>>> key = G.add_edge(2, 3, weight=5)
>>> [e for e in G.edges()]
[(0, 1), (1, 2), (2, 3)]
>>> G.edges.data() # default data is {} (empty dict)
MultiEdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})])
>>> G.edges.data('weight', default=1)
MultiEdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)])
>>> G.edges(keys=True) # default keys are integers
MultiEdgeView([(0, 1, 0), (1, 2, 0), (2, 3, 0)])
>>> G.edges.data(keys=True)
MultiEdgeDataView([(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})])
>>> G.edges.data('weight', default=1, keys=True)
MultiEdgeDataView([(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)])
>>> G.edges([0, 3])
MultiEdgeDataView([(0, 1), (3, 2)])
>>> G.edges(0)
MultiEdgeDataView([(0, 1)])
fresh_copy()

Return a fresh copy graph with the same data structure.

A fresh copy has no nodes, edges or graph attributes. It is the same data structure as the current graph. This method is typically used to create an empty version of the graph.

If you subclass the base class you should overwrite this method to return your class of graph.

get_edge_data(u, v, key=None, default=None)

Return the attribute dictionary associated with edge (u, v).

This is identical to G[u][v][key] except the default is returned instead of an exception is the edge doesn’t exist.

u, v : nodes

default : any Python object (default=None)
Value to return if the edge (u, v) is not found.
key : hashable identifier, optional (default=None)
Return data only for the edge with specified key.
edge_dict : dictionary
The edge attribute dictionary.
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> key = G.add_edge(0, 1, key='a', weight=7)
>>> G[0][1]['a']  # key='a'
{'weight': 7}
>>> G.edges[0, 1, 'a']  # key='a'
{'weight': 7}

Warning: we protect the graph data structure by making G.edges[1, 2, key] and G[1][2][key] read-only dict-like structures. You need to specify all edge info to assign to the edge data associated with that edge.

>>> G[0][1]['a']['weight'] = 10
>>> G.edges[0, 1, 'a']['weight'] = 10
>>> G[0][1]['a']['weight']
10
>>> G.edges[1, 0, 'a']['weight']
10
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.get_edge_data(0, 1)
{0: {}}
>>> e = (0, 1)
>>> G.get_edge_data(*e) # tuple form
{0: {}}
>>> G.get_edge_data('a', 'b', default=0) # edge not in graph, return 0
0
has_edge(u, v, key=None)

Return True if the graph has an edge between nodes u and v.

This is the same as v in G[u] or key in G[u][v] without KeyError exceptions.

u, v : nodes
Nodes can be, for example, strings or numbers.
key : hashable identifier, optional (default=None)
If specified return True only if the edge with key is found.
edge_ind : bool
True if edge is in the graph, False otherwise.

Can be called either using two nodes u, v, an edge tuple (u, v), or an edge tuple (u, v, key).

>>> G = nx.MultiGraph()   # or MultiDiGraph
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.has_edge(0, 1)  # using two nodes
True
>>> e = (0, 1)
>>> G.has_edge(*e)  #  e is a 2-tuple (u, v)
True
>>> G.add_edge(0, 1, key='a')
'a'
>>> G.has_edge(0, 1, key='a')  # specify key
True
>>> e=(0, 1, 'a')
>>> G.has_edge(*e) # e is a 3-tuple (u, v, 'a')
True

The following syntax are equivalent:

>>> G.has_edge(0, 1)
True
>>> 1 in G[0]  # though this gives :exc:`KeyError` if 0 not in G
True
has_node(n)

Return True if the graph contains the node n.

Identical to n in G

n : node

>>> G = nx.path_graph(3)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.has_node(0)
True

It is more readable and simpler to use

>>> 0 in G
True
html(**kwargs)
is_directed()

Return True if graph is directed, False otherwise.

is_multigraph()

used internally in constructor

length(edges=None)
Parameters:edges – iterator over edges either as (u,v,data) or (u,v,key,data). If None, all edges are taken
Returns:sum of ‘length’ attributes of edges
multi
name

String identifier of the graph.

This graph attribute appears in the attribute dict G.graph keyed by the string “name”. as well as an attribute (technically a property) G.name. This is entirely user controlled.

nbunch_iter(nbunch=None)

Return an iterator over nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
niter : iterator
An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.
NetworkXError
If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.

Graph.__iter__

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised.

neighbors(n)

Return an iterator over all neighbors of node n.

This is identical to iter(G[n])

n : node
A node in the graph
neighbors : iterator
An iterator over all neighbors of node n
NetworkXError
If the node n is not in the graph.
>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [n for n in G.neighbors(0)]
[1]

It is usually more convenient (and faster) to access the adjacency dictionary as G[n]:

>>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a', 'b', weight=7)
>>> G['a']
AtlasView({'b': {'weight': 7}})
>>> G = nx.path_graph(4)
>>> [n for n in G[0]]
[1]
new_edge_key(u, v)

Return an unused key for edges between nodes u and v.

The nodes u and v do not need to be already in the graph.

In the standard MultiGraph class the new key is the number of existing edges between u and v (increased if necessary to ensure unused). The first edge will have key 0, then 1, etc. If an edge is removed further new_edge_keys may not be in this order.

u, v : nodes

key : int

node

A NodeView of the Graph as G.nodes or G.nodes().

Can be used as G.nodes for data lookup and for set-like operations. Can also be used as G.nodes(data=’color’, default=None) to return a NodeDataView which reports specific node data but no set operations. It presents a dict-like interface as well with G.nodes.items() iterating over (node, nodedata) 2-tuples and G.nodes[3][‘foo’] providing the value of the foo attribute for node 3. In addition, a view G.nodes.data(‘foo’) provides a dict-like interface to the foo attribute of each node. G.nodes.data(‘foo’, default=1) provides a default for nodes that do not have attribute foo.

data : string or bool, optional (default=False)
The node attribute returned in 2-tuple (n, ddict[data]). If True, return entire node attribute dict as (n, ddict). If False, return just the nodes n.
default : value, optional (default=None)
Value used for nodes that dont have the requested attribute. Only relevant if data is not True or False.
NodeView

Allows set-like operations over the nodes as well as node attribute dict lookup and calling to get a NodeDataView. A NodeDataView iterates over (n, data) and has no set operations. A NodeView iterates over n and includes set operations.

When called, if data is False, an iterator over nodes. Otherwise an iterator of 2-tuples (node, attribute value) where the attribute is specified in data. If data is True then the attribute becomes the entire data dictionary.

If your node data is not needed, it is simpler and equivalent to use the expression for n in G, or list(G).

There are two simple ways of getting a list of all nodes in the graph:

>>> G = nx.path_graph(3)
>>> list(G.nodes)
[0, 1, 2]
>>> list(G)
[0, 1, 2]

To get the node data along with the nodes:

>>> G.add_node(1, time='5pm')
>>> G.nodes[0]['foo'] = 'bar'
>>> list(G.nodes(data=True))
[(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
>>> list(G.nodes.data())
[(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
>>> list(G.nodes(data='foo'))
[(0, 'bar'), (1, None), (2, None)]
>>> list(G.nodes.data('foo'))
[(0, 'bar'), (1, None), (2, None)]
>>> list(G.nodes(data='time'))
[(0, None), (1, '5pm'), (2, None)]
>>> list(G.nodes.data('time'))
[(0, None), (1, '5pm'), (2, None)]
>>> list(G.nodes(data='time', default='Not Available'))
[(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]
>>> list(G.nodes.data('time', default='Not Available'))
[(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]

If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never None:

>>> G = nx.Graph()
>>> G.add_node(0)
>>> G.add_node(1, weight=2)
>>> G.add_node(2, weight=3)
>>> dict(G.nodes(data='weight', default=1))
{0: 1, 1: 2, 2: 3}
node_dict_factory

alias of dict

nodes

A NodeView of the Graph as G.nodes or G.nodes().

Can be used as G.nodes for data lookup and for set-like operations. Can also be used as G.nodes(data=’color’, default=None) to return a NodeDataView which reports specific node data but no set operations. It presents a dict-like interface as well with G.nodes.items() iterating over (node, nodedata) 2-tuples and G.nodes[3][‘foo’] providing the value of the foo attribute for node 3. In addition, a view G.nodes.data(‘foo’) provides a dict-like interface to the foo attribute of each node. G.nodes.data(‘foo’, default=1) provides a default for nodes that do not have attribute foo.

data : string or bool, optional (default=False)
The node attribute returned in 2-tuple (n, ddict[data]). If True, return entire node attribute dict as (n, ddict). If False, return just the nodes n.
default : value, optional (default=None)
Value used for nodes that dont have the requested attribute. Only relevant if data is not True or False.
NodeView

Allows set-like operations over the nodes as well as node attribute dict lookup and calling to get a NodeDataView. A NodeDataView iterates over (n, data) and has no set operations. A NodeView iterates over n and includes set operations.

When called, if data is False, an iterator over nodes. Otherwise an iterator of 2-tuples (node, attribute value) where the attribute is specified in data. If data is True then the attribute becomes the entire data dictionary.

If your node data is not needed, it is simpler and equivalent to use the expression for n in G, or list(G).

There are two simple ways of getting a list of all nodes in the graph:

>>> G = nx.path_graph(3)
>>> list(G.nodes)
[0, 1, 2]
>>> list(G)
[0, 1, 2]

To get the node data along with the nodes:

>>> G.add_node(1, time='5pm')
>>> G.nodes[0]['foo'] = 'bar'
>>> list(G.nodes(data=True))
[(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
>>> list(G.nodes.data())
[(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
>>> list(G.nodes(data='foo'))
[(0, 'bar'), (1, None), (2, None)]
>>> list(G.nodes.data('foo'))
[(0, 'bar'), (1, None), (2, None)]
>>> list(G.nodes(data='time'))
[(0, None), (1, '5pm'), (2, None)]
>>> list(G.nodes.data('time'))
[(0, None), (1, '5pm'), (2, None)]
>>> list(G.nodes(data='time', default='Not Available'))
[(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]
>>> list(G.nodes.data('time', default='Not Available'))
[(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]

If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never None:

>>> G = nx.Graph()
>>> G.add_node(0)
>>> G.add_node(1, weight=2)
>>> G.add_node(2, weight=3)
>>> dict(G.nodes(data='weight', default=1))
{0: 1, 1: 2, 2: 3}
nodes_with_selfloops()
number_of_edges(u=None, v=None)

Return the number of edges between two nodes.

u, v : nodes, optional (Gefault=all edges)
If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.
nedges : int
The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. If the graph is directed, this only returns the number of edges from u to v.

size

For undirected multigraphs, this method counts the total number of edges in the graph:

>>> G = nx.MultiGraph()
>>> G.add_edges_from([(0, 1), (0, 1), (1, 2)])
[0, 1, 0]
>>> G.number_of_edges()
3

If you specify two nodes, this counts the total number of edges joining the two nodes:

>>> G.number_of_edges(0, 1)
2

For directed multigraphs, this method can count the total number of directed edges from u to v:

>>> G = nx.MultiDiGraph()
>>> G.add_edges_from([(0, 1), (0, 1), (1, 0)])
[0, 1, 0]
>>> G.number_of_edges(0, 1)
2
>>> G.number_of_edges(1, 0)
1
number_of_nodes(doublecheck=False)
number_of_selfloops()
order()

Return the number of nodes in the graph.

nnodes : int
The number of nodes in the graph.

number_of_nodes, __len__ which are identical

plot(**kwargs)

renders on IPython Notebook (alias to make usage more straightforward)

png(**kwargs)
pos(nodes=None)
Parameters:nodes – a single node, an iterator of all nodes if None
Returns:the position of node(s)
remove_edge(u, v=None, key=None, clean=False)
Parameters:
  • u – Node or Edge (Nodes tuple)
  • v – Node if u is a single Node
  • clean – bool removes disconnected nodes. must be False for certain nx algos to work
Result:

return attributes of removed edge

remove edge from graph. NetworkX graphs do not remove unused nodes

remove_edges_from(ebunch)

Remove all edges specified in ebunch.

ebunch: list or container of edge tuples

Each edge given in the list or container will be removed from the graph. The edges can be:

  • 2-tuples (u, v) All edges between u and v are removed.
  • 3-tuples (u, v, key) The edge identified by key is removed.
  • 4-tuples (u, v, key, data) where data is ignored.

remove_edge : remove a single edge

Will fail silently if an edge in ebunch is not in the graph.

>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> ebunch=[(1, 2), (2, 3)]
>>> G.remove_edges_from(ebunch)

Removing multiple copies of edges

>>> G = nx.MultiGraph()
>>> keys = G.add_edges_from([(1, 2), (1, 2), (1, 2)])
>>> G.remove_edges_from([(1, 2), (1, 2)])
>>> list(G.edges())
[(1, 2)]
>>> G.remove_edges_from([(1, 2), (1, 2)]) # silently ignore extra copy
>>> list(G.edges) # now empty graph
[]
remove_node(n)
Parameters:n – node tuple

remove node from graph and rtree

remove_nodes_from(nodes)

Remove multiple nodes.

nodes : iterable container
A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.

remove_node

>>> G = nx.path_graph(3)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = list(G.nodes)
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> list(G.nodes)
[]
render(fmt='svg', **kwargs)

render graph to bitmap stream :param fmt: string defining the format. ‘svg’ by default for INotepads :return: matplotlib figure as a byte stream in specified format

save(filename, **kwargs)

save graph in various formats

selfloop_edges(data=False, keys=False, default=None)
shortest_path(source=None, target=None)
size(weight=None)

Return the number of edges or total of all edge weights.

weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.
size : numeric

The number of edges or (if weight keyword is provided) the total weight sum.

If weight is None, returns an int. Otherwise a float (or more general numeric if the weights are more general).

number_of_edges

>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.size()
3
>>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a', 'b', weight=2)
>>> G.add_edge('b', 'c', weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0
stats()
Returns:dict of graph data to use in __repr__ or usable otherwise
subgraph(nodes)

Return a SubGraph view of the subgraph induced on nodes in nodes.

The induced subgraph of the graph contains the nodes in nodes and the edges between those nodes.

nodes : list, iterable
A container of nodes which will be iterated through once.
G : SubGraph View
A subgraph view of the graph. The graph structure cannot be changed but node/edge attributes can and are shared with the original graph.

The graph, edge and node attributes are shared with the original graph. Changes to the graph structure is ruled out by the view, but changes to attributes are reflected in the original graph.

To create a subgraph with its own copy of the edge/node attributes use: G.subgraph(nodes).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n for n in G if n not in set(nodes)])

>>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> nx.add_path(G, [0, 1, 2, 3])
>>> H = G.subgraph([0, 1, 2])
>>> list(H.edges)
[(0, 1), (1, 2)]
svg(**kwargs)
to_directed(as_view=False)

Return a directed representation of the graph.

G : MultiDiGraph
A directed graph with the same name, same nodes, and with each edge (u, v, data) replaced by two directed edges (u, v, data) and (v, u, data).

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, https://docs.python.org/2/library/copy.html.

Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not transfer to the MultiDiGraph created by this method.

>>> G = nx.Graph()   # or MultiGraph, etc
>>> G.add_edge(0, 1)
>>> H = G.to_directed()
>>> list(H.edges)
[(0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph()   # or MultiDiGraph, etc
>>> G.add_edge(0, 1)
>>> H = G.to_directed()
>>> list(H.edges)
[(0, 1)]
to_undirected(as_view=False)

Return an undirected copy of the graph.

G : Graph/MultiGraph
A deepcopy of the graph.

copy, add_edge, add_edges_from

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar G = nx.MultiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, https://docs.python.org/2/library/copy.html.

Warning: If you have subclassed MultiiGraph to use dict-like objects in the data structure, those changes do not transfer to the MultiGraph created by this method.

>>> G = nx.path_graph(2)   # or MultiGraph, etc
>>> H = G.to_directed()
>>> list(H.edges)
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> list(G2.edges)
[(0, 1)]
tol
class Goulib.graph.DiGraph(data=None, nodes=None, **kwargs)[source]

Bases: Goulib.graph._Geo, networkx.classes.multidigraph.MultiDiGraph

directed graph with nodes positions can be set to non multiedges anytime with attribute multi=False

Parameters:
  • data – see to_networkx_graph() for valid types
  • kwargs – other parameters will be copied as attributes, especially:
__init__(data=None, nodes=None, **kwargs)[source]
Parameters:
  • data – see to_networkx_graph() for valid types
  • kwargs – other parameters will be copied as attributes, especially:
__bool__()
Returns:True if graph has at least one node
__class__

alias of type

__contains__(n)

Return True if n is a node, False otherwise. Use: ‘n in G’.

>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> 1 in G
True
__delattr__

Implement delattr(self, name).

__dir__() → list

default dir() implementation

__eq__(other)
Returns:True if self and other are equal
__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__getitem__(n)

Return a dict of neighbors of node n. Use: ‘G[n]’.

n : node
A node in the graph.
adj_dict : dictionary
The adjacency dictionary for nodes connected to n.

G[n] is the same as G.adj[n] and similar to G.neighbors(n) (which is an iterator over G.adj[n])

>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G[0]
AtlasView({1: {}})
__getstate__()[source]
__gt__

Return self>value.

__hash__ = None
__iter__()

Iterate over the nodes. Use: ‘for n in G’.

niter : iterator
An iterator over all nodes in the graph.
>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [n for n in G]
[0, 1, 2, 3]
>>> list(G)
[0, 1, 2, 3]
__le__

Return self<=value.

__len__()

Return the number of nodes. Use: ‘len(G)’.

nnodes : int
The number of nodes in the graph.
>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> len(G)
4
__lt__

Return self<value.

__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__nonzero__()
Returns:True if graph has at least one node
__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

Return repr(self).

__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__str__()
Returns:string representation, used mainly for logging and debugging
add_cycle(nodes, **attr)
add_edge(u, v, key=None, **attr)

add an edge to graph

Returns:edge key
add_edge2(u, v, key=None, **attrs)

add an edge to graph :return: edge data from created or existing edge

add_edges_from(ebunch, **attr)

Add all the edges in ebunch.

ebunch : container of edges

Each edge given in the container will be added to the graph. The edges can be:

  • 2-tuples (u, v) or
  • 3-tuples (u, v, d) for an edge data dict d, or
  • 3-tuples (u, v, k) for not iterable key k, or
  • 4-tuples (u, v, k, d) for an edge with data and key k
attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

A list of edge keys assigned to the edges in ebunch.

add_edge : add a single edge add_weighted_edges_from : convenient way to add weighted edges

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments.

Default keys are generated using the method new_edge_key(). This method can be overridden by subclassing the base class and providing a custom new_edge_key() method.

>>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples
>>> e = zip(range(0, 3), range(1, 4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1, 2), (2, 3)], weight=3)
>>> G.add_edges_from([(3, 4), (1, 4)], label='WN2898')
add_node(p, **attr)

add a node or return one already very close :return (x,y,...) node id

add_nodes_from(nodes, **attr)
add_path(nodes, **attr)
add_star(nodes, **attr)
add_weighted_edges_from(ebunch, weight='weight', **attr)

Add all the weighted edges in ebunch with specified weights.

ebunch : container of edges
Each edge in the container is added to the graph. The edges must be given as 3-tuples (u, v, w) where w is a number.
weight : string, optional (default= ‘weight’)
The attribute name for the edge weights to be added.
attr : keyword arguments, optional (default= no attributes)
Edge attributes to add/update for all edges.

add_edge : add a single edge add_edges_from : add multiple edges

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.

>>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0, 1, 3.0), (1, 2, 7.5)])
adj

Graph adjacency object holding the neighbors of each node.

This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edgekey-dict. So G.adj[3][2][0][‘color’] = ‘blue’ sets the color of the edge (3, 2, 0) to “blue”.

Iterating over G.adj behaves like a dict. Useful idioms include for nbr, datadict in G.adj[n].items():.

The neighbor information is also provided by subscripting the graph. So for nbr, foovalue in G[node].data(‘foo’, default=1): works.

For directed graphs, G.adj holds outgoing (successor) info.

adjacency()

Return an iterator over (node, adjacency dict) tuples for all nodes.

For directed graphs, only outgoing neighbors/adjacencies are included.

adj_iter : iterator
An iterator over (node, adjacency dictionary) for all nodes in the graph.
>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [(n, nbrdict) for n, nbrdict in G.adjacency()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
adjlist_inner_dict_factory

alias of dict

adjlist_outer_dict_factory

alias of dict

box()
Returns:nodes bounding box as (xmin,ymin,...),(xmax,ymax,...)
box_size()
Returns:(x,y) size
clear()
closest_edges(p, data=False)
Returns:container of edges close to p and distance
closest_nodes(p, n=1, skip=False)

nodes closest to a given position :param p: (x,y) position tuple :param skip: optional bool to skip n itself :return: list of nodes, minimal distance

contiguity(pts)
Returns:int number of points from pts already in graph
copy()
Returns:copy of self graph
degree

A DegreeView for the Graph as G.degree or G.degree().

The node degree is the number of edges adjacent to the node. The weighted node degree is the sum of the edge weights for edges incident to that node.

This object provides an iterator for (node, degree) as well as lookup for the degree for a single node.

nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
weight : string or None, optional (default=None)
The name of an edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

If a single nodes is requested deg : int

Degree of the node

OR if multiple nodes are requested nd_iter : iterator

The iterator returns two-tuples of (node, degree).

out_degree, in_degree

>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.degree(0) # node 0 with degree 1
1
>>> list(G.degree([0, 1, 2]))
[(0, 1), (1, 2), (2, 2)]
dist(u, v)
Returns:float distance between nodes u and v
draw(**kwargs)

draw graph with default params

edge_attr_dict_factory

alias of dict

edge_key_dict_factory

alias of dict

edge_subgraph(edges)

Returns the subgraph induced by the specified edges.

The induced subgraph contains each edge in edges and each node incident to any one of those edges.

edges : iterable
An iterable of edges in this graph.
G : Graph
An edge-induced subgraph of this graph with the same edge attributes.

The graph, edge, and node attributes in the returned subgraph view are references to the corresponding attributes in the original graph. The view is read-only.

To create a full graph version of the subgraph with its own copy of the edge or node attributes, use:

>>> G.edge_subgraph(edges).copy()  
>>> G = nx.path_graph(5)
>>> H = G.edge_subgraph([(0, 1), (3, 4)])
>>> list(H.nodes)
[0, 1, 3, 4]
>>> list(H.edges)
[(0, 1), (3, 4)]
edges

An OutMultiEdgeView of the Graph as G.edges or G.edges().

edges(self, nbunch=None, data=False, keys=False, default=None)

The OutMultiEdgeView provides set-like operations on the edge-tuples as well as edge attribute lookup. When called, it also provides an EdgeDataView object which allows control of access to edge attributes (but does not provide set-like operations). Hence, G.edges[u, v][‘color’] provides the value of the color attribute for edge (u, v) while for (u, v, c) in G.edges(data=’color’, default=’red’): iterates through all the edges yielding the color attribute with default ‘red’ if no color attribute exists.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
data : string or bool, optional (default=False)
The edge attribute returned in 3-tuple (u, v, ddict[data]). If True, return edge attribute dict in 3-tuple (u, v, ddict). If False, return 2-tuple (u, v).
keys : bool, optional (default=False)
If True, return edge keys with each edge.
default : value, optional (default=None)
Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.
edges : EdgeView
A view of edge attributes, usually it iterates over (u, v) (u, v, k) or (u, v, k, d) tuples of edges, but can also be used for attribute lookup as edges[u, v, k][‘foo’].

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2])
>>> key = G.add_edge(2, 3, weight=5)
>>> [e for e in G.edges()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True, keys=True))
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight', default=1, keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges([0, 2]))
[(0, 1), (2, 3)]
>>> list(G.edges(0))
[(0, 1)]

in_edges, out_edges

fresh_copy()

Return a fresh copy graph with the same data structure.

A fresh copy has no nodes, edges or graph attributes. It is the same data structure as the current graph. This method is typically used to create an empty version of the graph.

If you subclass the base class you should overwrite this method to return your class of graph.

get_edge_data(u, v, key=None, default=None)

Return the attribute dictionary associated with edge (u, v).

This is identical to G[u][v][key] except the default is returned instead of an exception is the edge doesn’t exist.

u, v : nodes

default : any Python object (default=None)
Value to return if the edge (u, v) is not found.
key : hashable identifier, optional (default=None)
Return data only for the edge with specified key.
edge_dict : dictionary
The edge attribute dictionary.
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> key = G.add_edge(0, 1, key='a', weight=7)
>>> G[0][1]['a']  # key='a'
{'weight': 7}
>>> G.edges[0, 1, 'a']  # key='a'
{'weight': 7}

Warning: we protect the graph data structure by making G.edges[1, 2, key] and G[1][2][key] read-only dict-like structures. You need to specify all edge info to assign to the edge data associated with that edge.

>>> G[0][1]['a']['weight'] = 10
>>> G.edges[0, 1, 'a']['weight'] = 10
>>> G[0][1]['a']['weight']
10
>>> G.edges[1, 0, 'a']['weight']
10
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.get_edge_data(0, 1)
{0: {}}
>>> e = (0, 1)
>>> G.get_edge_data(*e) # tuple form
{0: {}}
>>> G.get_edge_data('a', 'b', default=0) # edge not in graph, return 0
0
has_edge(u, v, key=None)

Return True if the graph has an edge between nodes u and v.

This is the same as v in G[u] or key in G[u][v] without KeyError exceptions.

u, v : nodes
Nodes can be, for example, strings or numbers.
key : hashable identifier, optional (default=None)
If specified return True only if the edge with key is found.
edge_ind : bool
True if edge is in the graph, False otherwise.

Can be called either using two nodes u, v, an edge tuple (u, v), or an edge tuple (u, v, key).

>>> G = nx.MultiGraph()   # or MultiDiGraph
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.has_edge(0, 1)  # using two nodes
True
>>> e = (0, 1)
>>> G.has_edge(*e)  #  e is a 2-tuple (u, v)
True
>>> G.add_edge(0, 1, key='a')
'a'
>>> G.has_edge(0, 1, key='a')  # specify key
True
>>> e=(0, 1, 'a')
>>> G.has_edge(*e) # e is a 3-tuple (u, v, 'a')
True

The following syntax are equivalent:

>>> G.has_edge(0, 1)
True
>>> 1 in G[0]  # though this gives :exc:`KeyError` if 0 not in G
True
has_node(n)

Return True if the graph contains the node n.

Identical to n in G

n : node

>>> G = nx.path_graph(3)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.has_node(0)
True

It is more readable and simpler to use

>>> 0 in G
True
has_predecessor(u, v)[source]

Return True if node u has predecessor v.

This is true if graph has the edge u<-v.

has_successor(u, v)[source]

Return True if node u has successor v.

This is true if graph has the edge u->v.

html(**kwargs)
in_degree

A DegreeView for (node, in_degree) or in_degree for single node.

The node in-degree is the number of edges pointing in to the node. The weighted node degree is the sum of the edge weights for edges incident to that node.

This object provides an iterator for (node, degree) as well as lookup for the degree for a single node.

nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

If a single node is requested deg : int

Degree of the node

OR if multiple nodes are requested nd_iter : iterator

The iterator returns two-tuples of (node, in-degree).

degree, out_degree

>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.in_degree(0) # node 0 with degree 0
0
>>> list(G.in_degree([0, 1, 2]))
[(0, 0), (1, 1), (2, 1)]
in_edges

An InMultiEdgeView of the Graph as G.in_edges or G.in_edges().

in_edges(self, nbunch=None, data=False, keys=False, default=None)

nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
data : string or bool, optional (default=False)
The edge attribute returned in 3-tuple (u, v, ddict[data]). If True, return edge attribute dict in 3-tuple (u, v, ddict). If False, return 2-tuple (u, v).
keys : bool, optional (default=False)
If True, return edge keys with each edge.
default : value, optional (default=None)
Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.
in_edges : InMultiEdgeView
A view of edge attributes, usually it iterates over (u, v) or (u, v, k) or (u, v, k, d) tuples of edges, but can also be used for attribute lookup as edges[u, v, k][‘foo’].

edges

is_directed()

Return True if graph is directed, False otherwise.

is_multigraph()

used internally in constructor

length(edges=None)
Parameters:edges – iterator over edges either as (u,v,data) or (u,v,key,data). If None, all edges are taken
Returns:sum of ‘length’ attributes of edges
multi
name

String identifier of the graph.

This graph attribute appears in the attribute dict G.graph keyed by the string “name”. as well as an attribute (technically a property) G.name. This is entirely user controlled.

nbunch_iter(nbunch=None)

Return an iterator over nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
niter : iterator
An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.
NetworkXError
If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.

Graph.__iter__

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised.

neighbors(n)

Return an iterator over successor nodes of n.

neighbors() and successors() are the same.

new_edge_key(u, v)

Return an unused key for edges between nodes u and v.

The nodes u and v do not need to be already in the graph.

In the standard MultiGraph class the new key is the number of existing edges between u and v (increased if necessary to ensure unused). The first edge will have key 0, then 1, etc. If an edge is removed further new_edge_keys may not be in this order.

u, v : nodes

key : int

node

A NodeView of the Graph as G.nodes or G.nodes().

Can be used as G.nodes for data lookup and for set-like operations. Can also be used as G.nodes(data=’color’, default=None) to return a NodeDataView which reports specific node data but no set operations. It presents a dict-like interface as well with G.nodes.items() iterating over (node, nodedata) 2-tuples and G.nodes[3][‘foo’] providing the value of the foo attribute for node 3. In addition, a view G.nodes.data(‘foo’) provides a dict-like interface to the foo attribute of each node. G.nodes.data(‘foo’, default=1) provides a default for nodes that do not have attribute foo.

data : string or bool, optional (default=False)
The node attribute returned in 2-tuple (n, ddict[data]). If True, return entire node attribute dict as (n, ddict). If False, return just the nodes n.
default : value, optional (default=None)
Value used for nodes that dont have the requested attribute. Only relevant if data is not True or False.
NodeView

Allows set-like operations over the nodes as well as node attribute dict lookup and calling to get a NodeDataView. A NodeDataView iterates over (n, data) and has no set operations. A NodeView iterates over n and includes set operations.

When called, if data is False, an iterator over nodes. Otherwise an iterator of 2-tuples (node, attribute value) where the attribute is specified in data. If data is True then the attribute becomes the entire data dictionary.

If your node data is not needed, it is simpler and equivalent to use the expression for n in G, or list(G).

There are two simple ways of getting a list of all nodes in the graph:

>>> G = nx.path_graph(3)
>>> list(G.nodes)
[0, 1, 2]
>>> list(G)
[0, 1, 2]

To get the node data along with the nodes:

>>> G.add_node(1, time='5pm')
>>> G.nodes[0]['foo'] = 'bar'
>>> list(G.nodes(data=True))
[(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
>>> list(G.nodes.data())
[(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
>>> list(G.nodes(data='foo'))
[(0, 'bar'), (1, None), (2, None)]
>>> list(G.nodes.data('foo'))
[(0, 'bar'), (1, None), (2, None)]
>>> list(G.nodes(data='time'))
[(0, None), (1, '5pm'), (2, None)]
>>> list(G.nodes.data('time'))
[(0, None), (1, '5pm'), (2, None)]
>>> list(G.nodes(data='time', default='Not Available'))
[(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]
>>> list(G.nodes.data('time', default='Not Available'))
[(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]

If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never None:

>>> G = nx.Graph()
>>> G.add_node(0)
>>> G.add_node(1, weight=2)
>>> G.add_node(2, weight=3)
>>> dict(G.nodes(data='weight', default=1))
{0: 1, 1: 2, 2: 3}
node_dict_factory

alias of dict

nodes

A NodeView of the Graph as G.nodes or G.nodes().

Can be used as G.nodes for data lookup and for set-like operations. Can also be used as G.nodes(data=’color’, default=None) to return a NodeDataView which reports specific node data but no set operations. It presents a dict-like interface as well with G.nodes.items() iterating over (node, nodedata) 2-tuples and G.nodes[3][‘foo’] providing the value of the foo attribute for node 3. In addition, a view G.nodes.data(‘foo’) provides a dict-like interface to the foo attribute of each node. G.nodes.data(‘foo’, default=1) provides a default for nodes that do not have attribute foo.

data : string or bool, optional (default=False)
The node attribute returned in 2-tuple (n, ddict[data]). If True, return entire node attribute dict as (n, ddict). If False, return just the nodes n.
default : value, optional (default=None)
Value used for nodes that dont have the requested attribute. Only relevant if data is not True or False.
NodeView

Allows set-like operations over the nodes as well as node attribute dict lookup and calling to get a NodeDataView. A NodeDataView iterates over (n, data) and has no set operations. A NodeView iterates over n and includes set operations.

When called, if data is False, an iterator over nodes. Otherwise an iterator of 2-tuples (node, attribute value) where the attribute is specified in data. If data is True then the attribute becomes the entire data dictionary.

If your node data is not needed, it is simpler and equivalent to use the expression for n in G, or list(G).

There are two simple ways of getting a list of all nodes in the graph:

>>> G = nx.path_graph(3)
>>> list(G.nodes)
[0, 1, 2]
>>> list(G)
[0, 1, 2]

To get the node data along with the nodes:

>>> G.add_node(1, time='5pm')
>>> G.nodes[0]['foo'] = 'bar'
>>> list(G.nodes(data=True))
[(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
>>> list(G.nodes.data())
[(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
>>> list(G.nodes(data='foo'))
[(0, 'bar'), (1, None), (2, None)]
>>> list(G.nodes.data('foo'))
[(0, 'bar'), (1, None), (2, None)]
>>> list(G.nodes(data='time'))
[(0, None), (1, '5pm'), (2, None)]
>>> list(G.nodes.data('time'))
[(0, None), (1, '5pm'), (2, None)]
>>> list(G.nodes(data='time', default='Not Available'))
[(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]
>>> list(G.nodes.data('time', default='Not Available'))
[(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]

If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never None:

>>> G = nx.Graph()
>>> G.add_node(0)
>>> G.add_node(1, weight=2)
>>> G.add_node(2, weight=3)
>>> dict(G.nodes(data='weight', default=1))
{0: 1, 1: 2, 2: 3}
nodes_with_selfloops()
number_of_edges(u=None, v=None)

Return the number of edges between two nodes.

u, v : nodes, optional (Gefault=all edges)
If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.
nedges : int
The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. If the graph is directed, this only returns the number of edges from u to v.

size

For undirected multigraphs, this method counts the total number of edges in the graph:

>>> G = nx.MultiGraph()
>>> G.add_edges_from([(0, 1), (0, 1), (1, 2)])
[0, 1, 0]
>>> G.number_of_edges()
3

If you specify two nodes, this counts the total number of edges joining the two nodes:

>>> G.number_of_edges(0, 1)
2

For directed multigraphs, this method can count the total number of directed edges from u to v:

>>> G = nx.MultiDiGraph()
>>> G.add_edges_from([(0, 1), (0, 1), (1, 0)])
[0, 1, 0]
>>> G.number_of_edges(0, 1)
2
>>> G.number_of_edges(1, 0)
1
number_of_nodes(doublecheck=False)
number_of_selfloops()
order()

Return the number of nodes in the graph.

nnodes : int
The number of nodes in the graph.

number_of_nodes, __len__ which are identical

out_degree

Return an iterator for (node, out-degree) or out-degree for single node.

out_degree(self, nbunch=None, weight=None)

The node out-degree is the number of edges pointing out of the node. This function returns the out-degree for a single node or an iterator for a bunch of nodes or if nothing is passed as argument.

nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights.

If a single node is requested deg : int

Degree of the node

OR if multiple nodes are requested nd_iter : iterator

The iterator returns two-tuples of (node, out-degree).

degree, in_degree

>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.out_degree(0) # node 0 with degree 1
1
>>> list(G.out_degree([0, 1, 2]))
[(0, 1), (1, 1), (2, 1)]
out_edges

An OutMultiEdgeView of the Graph as G.edges or G.edges().

edges(self, nbunch=None, data=False, keys=False, default=None)

The OutMultiEdgeView provides set-like operations on the edge-tuples as well as edge attribute lookup. When called, it also provides an EdgeDataView object which allows control of access to edge attributes (but does not provide set-like operations). Hence, G.edges[u, v][‘color’] provides the value of the color attribute for edge (u, v) while for (u, v, c) in G.edges(data=’color’, default=’red’): iterates through all the edges yielding the color attribute with default ‘red’ if no color attribute exists.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
data : string or bool, optional (default=False)
The edge attribute returned in 3-tuple (u, v, ddict[data]). If True, return edge attribute dict in 3-tuple (u, v, ddict). If False, return 2-tuple (u, v).
keys : bool, optional (default=False)
If True, return edge keys with each edge.
default : value, optional (default=None)
Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.
edges : EdgeView
A view of edge attributes, usually it iterates over (u, v) (u, v, k) or (u, v, k, d) tuples of edges, but can also be used for attribute lookup as edges[u, v, k][‘foo’].

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2])
>>> key = G.add_edge(2, 3, weight=5)
>>> [e for e in G.edges()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True, keys=True))
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight', default=1, keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges([0, 2]))
[(0, 1), (2, 3)]
>>> list(G.edges(0))
[(0, 1)]

in_edges, out_edges

plot(**kwargs)

renders on IPython Notebook (alias to make usage more straightforward)

png(**kwargs)
pos(nodes=None)
Parameters:nodes – a single node, an iterator of all nodes if None
Returns:the position of node(s)
pred

Graph adjacency object holding the predecessors of each node.

This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edgekey-dict. So G.adj[3][2][0][‘color’] = ‘blue’ sets the color of the edge (3, 2, 0) to “blue”.

Iterating over G.adj behaves like a dict. Useful idioms include for nbr, datadict in G.adj[n].items():.

predecessors(n)[source]

Return an iterator over predecessor nodes of n.

remove_edge(u, v=None, key=None, clean=False)
Parameters:
  • u – Node or Edge (Nodes tuple)
  • v – Node if u is a single Node
  • clean – bool removes disconnected nodes. must be False for certain nx algos to work
Result:

return attributes of removed edge

remove edge from graph. NetworkX graphs do not remove unused nodes

remove_edges_from(ebunch)

Remove all edges specified in ebunch.

ebunch: list or container of edge tuples

Each edge given in the list or container will be removed from the graph. The edges can be:

  • 2-tuples (u, v) All edges between u and v are removed.
  • 3-tuples (u, v, key) The edge identified by key is removed.
  • 4-tuples (u, v, key, data) where data is ignored.

remove_edge : remove a single edge

Will fail silently if an edge in ebunch is not in the graph.

>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> ebunch=[(1, 2), (2, 3)]
>>> G.remove_edges_from(ebunch)

Removing multiple copies of edges

>>> G = nx.MultiGraph()
>>> keys = G.add_edges_from([(1, 2), (1, 2), (1, 2)])
>>> G.remove_edges_from([(1, 2), (1, 2)])
>>> list(G.edges())
[(1, 2)]
>>> G.remove_edges_from([(1, 2), (1, 2)]) # silently ignore extra copy
>>> list(G.edges) # now empty graph
[]
remove_node(n)
Parameters:n – node tuple

remove node from graph and rtree

remove_nodes_from(nodes)[source]

Remove multiple nodes.

nodes : iterable container
A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.

remove_node

>>> G = nx.path_graph(3)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = list(G.nodes)
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> list(G.nodes)
[]
render(fmt='svg', **kwargs)

render graph to bitmap stream :param fmt: string defining the format. ‘svg’ by default for INotepads :return: matplotlib figure as a byte stream in specified format

reverse(copy=True)

Return the reverse of the graph.

The reverse is a graph with the same nodes and edges but with the directions of the edges reversed.

copy : bool optional (default=True)
If True, return a new DiGraph holding the reversed edges. If False, the reverse graph is created using a view of the original graph.
save(filename, **kwargs)

save graph in various formats

selfloop_edges(data=False, keys=False, default=None)
shortest_path(source=None, target=None)
size(weight=None)

Return the number of edges or total of all edge weights.

weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.
size : numeric

The number of edges or (if weight keyword is provided) the total weight sum.

If weight is None, returns an int. Otherwise a float (or more general numeric if the weights are more general).

number_of_edges

>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.size()
3
>>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a', 'b', weight=2)
>>> G.add_edge('b', 'c', weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0
stats()
Returns:dict of graph data to use in __repr__ or usable otherwise
subgraph(nodes)

Return a SubGraph view of the subgraph induced on nodes in nodes.

The induced subgraph of the graph contains the nodes in nodes and the edges between those nodes.

nodes : list, iterable
A container of nodes which will be iterated through once.
G : SubGraph View
A subgraph view of the graph. The graph structure cannot be changed but node/edge attributes can and are shared with the original graph.

The graph, edge and node attributes are shared with the original graph. Changes to the graph structure is ruled out by the view, but changes to attributes are reflected in the original graph.

To create a subgraph with its own copy of the edge/node attributes use: G.subgraph(nodes).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n for n in G if n not in set(nodes)])

>>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> H = G.subgraph([0, 1, 2])
>>> list(H.edges)
[(0, 1), (1, 2)]
succ

Graph adjacency object holding the successors of each node.

This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edgekey-dict. So G.adj[3][2][0][‘color’] = ‘blue’ sets the color of the edge (3, 2, 0) to “blue”.

Iterating over G.adj behaves like a dict. Useful idioms include for nbr, datadict in G.adj[n].items():.

The neighbor information is also provided by subscripting the graph. So for nbr, foovalue in G[node].data(‘foo’, default=1): works.

For directed graphs, G.succ is identical to G.adj.

successors(n)[source]

Return an iterator over successor nodes of n.

neighbors() and successors() are the same.

svg(**kwargs)
to_directed(as_view=False)

Return a directed representation of the graph.

G : MultiDiGraph
A directed graph with the same name, same nodes, and with each edge (u, v, data) replaced by two directed edges (u, v, data) and (v, u, data).

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, https://docs.python.org/2/library/copy.html.

Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not transfer to the MultiDiGraph created by this method.

>>> G = nx.Graph()   # or MultiGraph, etc
>>> G.add_edge(0, 1)
>>> H = G.to_directed()
>>> list(H.edges)
[(0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph()   # or MultiDiGraph, etc
>>> G.add_edge(0, 1)
>>> H = G.to_directed()
>>> list(H.edges)
[(0, 1)]
to_undirected(reciprocal=False, as_view=False)

Return an undirected representation of the digraph.

reciprocal : bool (optional)
If True only keep edges that appear in both directions in the original digraph.
as_view : bool (optional, default=False)
If True return an undirected view of the original directed graph.
G : MultiGraph
An undirected graph with the same name and nodes and with edge (u, v, data) if either (u, v, data) or (v, u, data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired.

MultiGraph, copy, add_edge, add_edges_from

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar D=MultiiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, https://docs.python.org/2/library/copy.html.

Warning: If you have subclassed MultiDiGraph to use dict-like objects in the data structure, those changes do not transfer to the MultiGraph created by this method.

>>> G = nx.path_graph(2)   # or MultiGraph, etc
>>> H = G.to_directed()
>>> list(H.edges)
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> list(G2.edges)
[(0, 1)]
tol
Goulib.graph.figure(g, box=None, **kwargs)[source]
Parameters:
  • g – _Geo derived Graph
  • box – optional interval.Box if g has no box
Returns:

matplotlib axis suitable for drawing graph g

Goulib.graph.draw_networkx(g, pos=None, **kwargs)[source]

improves nx.draw_networkx :param g: NetworkX Graph :param pos: can be either :

  • optional dictionary of (x,y) node positions
  • function of the form lambda node:(x,y) that maps node positions.
  • None. in this case, nodes are directly used as positions if graph is a GeoGraph, otherwise nx.draw_shell is used
Parameters:**kwargs

passed to nx.draw method as described in http://networkx.lanl.gov/reference/generated/networkx.drawing.nx_pylab.draw_networkx.html with one tweak:

  • if edge_color is a function of the form lambda data:color string, it is mapped over all edges
Goulib.graph.to_drawing(g, d=None, edges=[])[source]

draws Graph to a Drawing :param g: Graph :param d: existing Drawing to draw onto, or None to create a new Drawing :param edges: iterable of edges (with data) that will be added, in the same order. By default all edges are drawn :return: Drawing

Graph edges with an ‘entity’ property

Goulib.graph.write_dxf(g, filename)[source]

writes networkx.Graph in .dxf format

Goulib.graph.write_dot(g, filename)[source]
Goulib.graph.to_json(g, **kwargs)[source]
Returns:string JSON representation of a graph
Goulib.graph.write_json(g, filename, **kwargs)[source]

write a JSON file, suitable for D*.js representation

Goulib.graph.read_json(filename, directed=False, multigraph=True, attrs=None)[source]
Goulib.graph.delauney_triangulation(nodes, qhull_options='', incremental=False, **kwargs)[source]

https://en.wikipedia.org/wiki/Delaunay_triangulation :param nodes: _Geo graph or list of (x,y) or (x,y,z) node positions :param qhull_options: string passed to scipy.spatial.Delaunay(), which passes it to Qhull ( http://www.qhull.org/ ) *‘Qt’ ensures all points are connected *‘Qz’ required when nodes lie on a sphere *‘QJ’ solves some singularity situations

Parameters:kwargs – passed to the GeoGraph constructor
Returns:GeoGraph with delauney triangulation between nodes
Goulib.graph.euclidean_minimum_spanning_tree(nodes, **kwargs)[source]
Parameters:nodes – list of (x,y) nodes positions
Returns:GeoGraph with minimum spanning tree between nodes

see https://en.wikipedia.org/wiki/Euclidean_minimum_spanning_tree

Goulib.graph.points_on_sphere(N)[source]