Goulib.math2 module¶

more math than `math` standard library, without numpy

`Goulib.math2.``cmp`(x, y)[source]

Compare the two objects x and y and return an integer according to the outcome. The return value is negative if x < y, zero if x == y and strictly positive if x > y.

`Goulib.math2.``allclose`(a, b, rel_tol=1e-09, abs_tol=0.0)[source]
Returns: True if two arrays are element-wise equal within a tolerance.
`Goulib.math2.``is_number`(x)[source]
Returns: True if x is a number of any type, including Complex
`Goulib.math2.``is_complex`(x)[source]
`Goulib.math2.``is_real`(x)[source]
`Goulib.math2.``sign`(number)[source]
Returns: 1 if number is positive, -1 if negative, 0 if ==0
`Goulib.math2.``rint`(v)[source]
Returns: int value nearest to float v
`Goulib.math2.``is_integer`(x, rel_tol=0, abs_tol=0)[source]
Returns: True if float x is an integer within tolerances
`Goulib.math2.``int_or_float`(x, rel_tol=0, abs_tol=0)[source]
Parameters: x – int or float int if x is (almost) an integer, otherwise float
`Goulib.math2.``format`(x, decimals=3)[source]

formats a float with given number of decimals, but not an int

Returns: string repr of x with decimals if not int
`Goulib.math2.``gcd`(*args)[source]

greatest common divisor of an arbitrary number of args

`Goulib.math2.``lcm`(*args)[source]

least common multiple of any number of integers

`Goulib.math2.``xgcd`(a, b)[source]

Extended GCD

Returns: (gcd, x, y) where gcd is the greatest common divisor of a and b

with the sign of b if b is nonzero, and with the sign of a if b is 0. The numbers x,y are such that gcd = ax+by.

`Goulib.math2.``coprime`(*args)[source]
Returns: True if args are coprime to each other
`Goulib.math2.``coprimes_gen`(limit)[source]

generates coprime pairs using Farey sequence

`Goulib.math2.``carmichael`(n)[source]

Carmichael function :return : int smallest positive integer m such that a^m mod n = 1 for every integer a between 1 and n that is coprime to n. :param n: int :see: https://en.wikipedia.org/wiki/Carmichael_function :see: https://oeis.org/A002322

also known as the reduced totient function or the least universal exponent function.

`Goulib.math2.``is_primitive_root`(x, m, s={})[source]

returns True if x is a primitive root of m

Parameters: s – set of coprimes to m, if already known
`Goulib.math2.``primitive_root_gen`(m)[source]

generate primitive roots modulo m

`Goulib.math2.``primitive_roots`(modulo)[source]
`Goulib.math2.``quad`(a, b, c, allow_complex=False)[source]

Parameters: a,b,c – floats allow_complex – function returns complex roots if True x1,x2 real or complex solutions
`Goulib.math2.``ceildiv`(a, b)[source]
`Goulib.math2.``ipow`(x, y, z=0)[source]
Parameters: x – number (int or float) y – int power z – int optional modulus (x**y) % z as integer if possible
`Goulib.math2.``pow`(x, y, z=0)[source]
Returns: (x**y) % z as integer
`Goulib.math2.``sqrt`(n)[source]

square root :return: int, float or complex depending on n

`Goulib.math2.``isqrt`(n)[source]

integer square root

Returns: largest int x for which x * x <= n
`Goulib.math2.``icbrt`(n)[source]

integer cubic root

Returns: largest int x for which x * x * x <= n
`Goulib.math2.``is_square`(n)[source]
`Goulib.math2.``introot`(n, r=2)[source]

integer r-th root

Returns: int, greatest integer less than or equal to the r-th root of n.

For negative n, returns the least integer greater than or equal to the r-th root of n, or None if r is even.

`Goulib.math2.``is_power`(n)[source]
Returns: integer that, when squared/cubed/etc, yields n,

or 0 if no such integer exists. Note that the power to which this number is raised will be prime.

`Goulib.math2.``multiply`(x, y)[source]

Karatsuba fast multiplication algorithm

https://en.wikipedia.org/wiki/Karatsuba_algorithm

Copyright (c) 2014 Project Nayuki http://www.nayuki.io/page/karatsuba-multiplication

`Goulib.math2.``accsum`(it)[source]

Yield accumulated sums of iterable: accsum(count(1)) -> 1,3,6,10,…

`Goulib.math2.``cumsum`(it)

Yield accumulated sums of iterable: accsum(count(1)) -> 1,3,6,10,…

`Goulib.math2.``mul`(nums, init=1)[source]
Returns: Product of nums
`Goulib.math2.``dot_vv`(a, b, default=0)[source]

dot product for vectors

Parameters: a – vector (iterable) b – vector (iterable) default – default value of the multiplication operator
`Goulib.math2.``dot_mv`(a, b, default=0)[source]

dot product for vectors

Parameters: a – matrix (iterable or iterables) b – vector (iterable) default – default value of the multiplication operator
`Goulib.math2.``dot_mm`(a, b, default=0)[source]

dot product for matrices

Parameters: a – matrix (iterable or iterables) b – matrix (iterable or iterables) default – default value of the multiplication operator
`Goulib.math2.``dot`(a, b, default=0)[source]

dot product

general but slow : use dot_vv, dot_mv or dot_mm if you know a and b’s dimensions

`Goulib.math2.``zeros`(shape)[source]
`Goulib.math2.``diag`(v)[source]

Create a two-dimensional array with the flattened input as a diagonal.

Parameters: v – If v is a 2-D array, return a copy of its diagonal. If v is a 1-D array, return a 2-D array with v on the diagonal https://docs.scipy.org/doc/numpy/reference/generated/numpy.diag.html#numpy.diag
`Goulib.math2.``identity`(n)[source]
`Goulib.math2.``eye`(n)
`Goulib.math2.``transpose`(m)[source]
Returns: matrix m transposed
`Goulib.math2.``maximum`(m)[source]

Compare N arrays and returns a new array containing the element-wise maxima

Parameters: m – list of arrays (matrix) list of maximal values found in each column of m http://docs.scipy.org/doc/numpy/reference/generated/numpy.maximum.html
`Goulib.math2.``minimum`(m)[source]

Compare N arrays and returns a new array containing the element-wise minima

Parameters: m – list of arrays (matrix) list of minimal values found in each column of m http://docs.scipy.org/doc/numpy/reference/generated/numpy.minimum.html
`Goulib.math2.``vecadd`(a, b, fillvalue=0)[source]

addition of vectors of inequal lengths

`Goulib.math2.``vecsub`(a, b, fillvalue=0)[source]

substraction of vectors of inequal lengths

`Goulib.math2.``vecneg`(a)[source]

unary negation

`Goulib.math2.``vecmul`(a, b)[source]

product of vectors of inequal lengths

`Goulib.math2.``vecdiv`(a, b)[source]

quotient of vectors of inequal lengths

`Goulib.math2.``veccompare`(a, b)[source]

compare values in 2 lists. returns triple number of pairs where [a<b, a==b, a>b]

`Goulib.math2.``sat`(x, low=0, high=None)[source]

saturates x between low and high

`Goulib.math2.``norm_2`(v)[source]
Returns: “normal” euclidian norm of vector v
`Goulib.math2.``norm_1`(v)[source]
Returns: “manhattan” norm of vector v
`Goulib.math2.``norm_inf`(v)[source]
Returns: infinite norm of vector v
`Goulib.math2.``norm`(v, order=2)[source]
`Goulib.math2.``dist`(a, b, norm=<function norm_2>)[source]
`Goulib.math2.``vecunit`(v, norm=<function norm_2>)[source]
Returns: vector normalized
`Goulib.math2.``hamming`(s1, s2)[source]

Calculate the Hamming distance between two iterables

`Goulib.math2.``sets_dist`(a, b)[source]
`Goulib.math2.``sets_levenshtein`(a, b)[source]

levenshtein distance on sets

`Goulib.math2.``levenshtein`(seq1, seq2)[source]

levenshtein distance

Returns: distance between 2 iterables http://en.wikipedia.org/wiki/Levenshtein_distance
`Goulib.math2.``recurrence`(signature, values, cst=0, max=None, mod=0)[source]

general generator for recurrences

Parameters: signature – factors defining the recurrence values – list of initial values
`Goulib.math2.``fibonacci_gen`(max=None, mod=0)[source]

Generate fibonacci serie

`Goulib.math2.``fibonacci`(n, mod=0)[source]

fibonacci series n-th element

Parameters: n – int can be extremely high, like 1e19 ! mod – int optional modulo
`Goulib.math2.``is_fibonacci`(n)[source]

returns True if n is in Fibonacci series

`Goulib.math2.``pisano_cycle`(mod)[source]
`Goulib.math2.``pisano_period`(mod)[source]
`Goulib.math2.``collatz`(n)[source]
`Goulib.math2.``collatz_gen`(n=0)[source]
`Goulib.math2.``collatz_period`(n)[source]
`Goulib.math2.``pascal_gen`()[source]

Pascal’s triangle read by rows: C(n,k) = binomial(n,k) = n!/(k!*(n-k)!), 0<=k<=n.

https://oeis.org/A007318

`Goulib.math2.``catalan`(n)[source]

Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!).

`Goulib.math2.``catalan_gen`()[source]

Generate Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!). Also called Segner numbers.

`Goulib.math2.``is_pythagorean_triple`(a, b, c)[source]
`Goulib.math2.``primitive_triples`()[source]

generates primitive Pythagorean triplets x<y<z

sorted by hypotenuse z, then longest side y through Berggren’s matrices and breadth first traversal of ternary tree :see: https://en.wikipedia.org/wiki/Tree_of_primitive_Pythagorean_triples

`Goulib.math2.``triples`()[source]

generates all Pythagorean triplets triplets x<y<z sorted by hypotenuse z, then longest side y

`Goulib.math2.``divisors`(n)[source]
Parameters: n – int all divisors of n: divisors(12) -> 1,2,3,6,12

including 1 and n, except for 1 which returns a single 1 to avoid messing with sum of divisors…

`Goulib.math2.``proper_divisors`(n)[source]
Returns: all divisors of n except n itself.
class `Goulib.math2.``Sieve`(f, init)[source]

Bases: `object`

`__init__`(f, init)[source]

Initialize self. See help(type(self)) for accurate signature.

`__len__`()[source]
`__getitem__`(index)[source]
`__call__`(n)[source]

Call self as a function.

`resize`(n)[source]
`__class__`

alias of `builtins.type`

`__delattr__`

Implement delattr(self, name).

`__dir__`() → list

default dir() implementation

`__eq__`

Return self==value.

`__format__`()

default object formatter

`__ge__`

Return self>=value.

`__getattribute__`

Return getattr(self, name).

`__gt__`

Return self>value.

`__hash__`

Return hash(self).

`__le__`

Return self<=value.

`__lt__`

Return self<value.

`__ne__`

Return self!=value.

`__new__`()

Create and return a new object. See help(type) for accurate signature.

`__reduce__`()

helper for pickle

`__reduce_ex__`()

helper for pickle

`__repr__`

Return repr(self).

`__setattr__`

Implement setattr(self, name, value).

`__sizeof__`() → int

size of object in memory, in bytes

`__str__`

Return str(self).

`Goulib.math2.``erathostene`(n)[source]
`Goulib.math2.``sieve`(n, oneisprime=False)[source]

prime numbers from 2 to a prime < n

`Goulib.math2.``primes`(n)[source]

memoized list of n first primes

Warning: do not call with large n, use prime_gen instead
`Goulib.math2.``is_prime_euler`(n, eb=(2, ))[source]

Euler’s primality test

Parameters: n – int number to test eb – test basis False if not prime, True if prime, but also for many pseudoprimes… https://en.wikipedia.org/wiki/Euler_pseudoprime
`Goulib.math2.``is_prime`(n, oneisprime=False, tb=(3, 5, 7, 11), eb=(2, ), mrb=None)[source]

main primality test.

Parameters: n – int number to test oneisprime – bool True if 1 should be considered prime (it was, a long time ago) tb – trial division basis eb – Euler’s test basis mrb – Miller-Rabin basis, automatic if None https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test

It’s an implementation of the BPSW test (Baillie-Pomerance-Selfridge-Wagstaff) with some prefiltes for speed and is deterministic for all numbers less than 2^64 Iin fact, while infinitely many false positives are conjectured to exist, no false positives are currently known. The prefilters consist of trial division against 2 and the elements of the tuple tb, checking whether n is square, and Euler’s primality test to the bases in the tuple eb. If the number is less than 3825123056546413051, we use the Miller-Rabin test on a set of bases for which the test is known to be deterministic over this range.

`Goulib.math2.``nextprime`(n)[source]

Determines, with some semblance of efficiency, the least prime number strictly greater than n.

`Goulib.math2.``prevprime`(n)[source]

Determines, very inefficiently, the largest prime number strictly smaller than n.

`Goulib.math2.``primes_gen`(start=2, stop=None)[source]

generate prime numbers from start

`Goulib.math2.``random_prime`(bits)[source]

returns a random number of the specified bit length

`Goulib.math2.``euclid_gen`()[source]

generates Euclid numbers: 1 + product of the first n primes

`Goulib.math2.``prime_factors`(num, start=2)[source]

generates all prime factors (ordered) of num

`Goulib.math2.``lpf`(n)[source]

greatest prime factor

`Goulib.math2.``gpf`(n)[source]

greatest prime factor

`Goulib.math2.``prime_divisors`(num, start=2)[source]

generates unique prime divisors (ordered) of num

`Goulib.math2.``is_multiple`(n, factors)[source]

return True if n has ONLY factors as prime factors

`Goulib.math2.``factorize`(n)[source]

find the prime factors of n along with their frequencies. Example:

```>>> factor(786456)
[(2,3), (3,3), (11,1), (331,1)]
```
`Goulib.math2.``factors`(n)[source]
`Goulib.math2.``number_of_divisors`(n)[source]
`Goulib.math2.``omega`(n)[source]

Number of distinct primes dividing n

`Goulib.math2.``bigomega`(n)[source]

Number of prime divisors of n counted with multiplicity

`Goulib.math2.``moebius`(n)[source]

Möbius (or Moebius) function mu(n). mu(1) = 1; mu(n) = (-1)^k if n is the product of k different primes; otherwise mu(n) = 0.

`Goulib.math2.``euler_phi`(n)[source]

Euler totient function

`Goulib.math2.``totient`(n)

Euler totient function

`Goulib.math2.``kempner`(n)[source]

“Kempner function, also called Smarandache function

Returns: int smallest positive integer m such that n divides m!. n – int https://en.wikipedia.org/wiki/Kempner_function http://mathworld.wolfram.com/SmarandacheFunction.html
`Goulib.math2.``prime_ktuple`(constellation)[source]

generates tuples of primes with specified differences

Parameters: constellation – iterable of int differences betwwen primes to return negative int means the difference must NOT be prime https://en.wikipedia.org/wiki/Prime_k-tuple

(0, 2) twin primes (0, 4) cousin primes (0, 6) sexy primes (0, 2, 6), (0, 4, 6) prime triplets (0, 6, 12, -18) sexy prime triplets (0, 2, 6, 8) prime quadruplets (0, 6, 12, 18) sexy prime quadruplets (0, 2, 6, 8, 12), (0, 4, 6, 10, 12) quintuplet primes (0, 4, 6, 10, 12, 16) sextuplet primes

`Goulib.math2.``twin_primes`()[source]
`Goulib.math2.``cousin_primes`()[source]
`Goulib.math2.``sexy_primes`()[source]
`Goulib.math2.``sexy_prime_triplets`()[source]
`Goulib.math2.``sexy_prime_quadruplets`()[source]
`Goulib.math2.``lucas_lehmer`(p)[source]

Lucas Lehmer primality test for Mersenne exponent p

Parameters: p – int True if 2^p-1 is prime
`Goulib.math2.``digits_gen`(num, base=10)[source]

generates int digits of num in base BACKWARDS

`Goulib.math2.``digits`(num, base=10, rev=False)[source]
Returns: list of digits of num expressed in base, optionally reversed
`Goulib.math2.``digsum`(num, f=None, base=10)[source]

sum of digits

Parameters: num – number f – int power or function applied to each digit base – optional base sum of f(digits) of num

digsum(num) -> sum of digits digsum(num,base=2) -> number of 1 bits in binary represenation of num digsum(num,2) -> sum of the squares of digits digsum(num,f=lambda x:x**x) -> sum of the digits elevaed to their own power

`Goulib.math2.``integer_exponent`(a, b=10)[source]
Returns: int highest power of b that divides a. https://reference.wolfram.com/language/ref/IntegerExponent.html
`Goulib.math2.``trailing_zeros`(a, b=10)
Returns: int highest power of b that divides a. https://reference.wolfram.com/language/ref/IntegerExponent.html
`Goulib.math2.``power_tower`(v)[source]
Returns: v**v**v … http://ajcr.net#Python-power-tower/
`Goulib.math2.``carries`(a, b, base=10, pos=0)[source]
Returns: int number of carries required to add a+b in base
`Goulib.math2.``powertrain`(n)[source]
Returns: v**v*v**v …**(v[-1] or 0) # Chai Wah Wu, Jun 16 2017 http://oeis.org/A133500
`Goulib.math2.``str_base`(num, base=10, numerals='0123456789abcdefghijklmnopqrstuvwxyz')[source]
Returns: string representation of num in base num – int number (decimal) base – int base, 10 by default numerals – string with all chars representing numbers in base base. chars after the base-th are ignored
`Goulib.math2.``int_base`(num, base)[source]
Returns: int representation of num in base num – int number (decimal) base – int base, <= 10
`Goulib.math2.``num_from_digits`(digits, base=10)[source]
Parameters: digits – string or list of digits representing a number in given base base – int base, 10 by default int number
`Goulib.math2.``reverse`(i)[source]
`Goulib.math2.``is_palindromic`(num, base=10)[source]

Check if ‘num’ in base ‘base’ is a palindrome, that’s it, if it can be read equally from left to right and right to left.

`Goulib.math2.``is_anagram`(num1, num2, base=10)[source]

Check if ‘num1’ and ‘num2’ have the same digits in base

`Goulib.math2.``is_pandigital`(num, base=10)[source]
Returns: True if num contains all digits in specified base
`Goulib.math2.``bouncy`(n, up=False, down=False)[source]
Parameters: n – int number to test up – bool down – bool

bouncy(x) returns True for Bouncy numbers (digits form a strictly non-monotonic sequence) (A152054) bouncy(x,True,None) returns True for Numbers with digits in nondecreasing order (OEIS A009994) bouncy(x,None,True) returns True for Numbers with digits in nonincreasing order (OEIS A009996)

`Goulib.math2.``repunit_gen`(base=10, digit=1)[source]

generate repunits

`Goulib.math2.``repunit`(n, base=10, digit=1)[source]
Returns: nth repunit
`Goulib.math2.``rational_form`(numerator, denominator)[source]

information about the decimal representation of a rational number.

Returns: 5 integer : integer, decimal, shift, repeat, cycle
• shift is the len of decimal with leading zeroes if any
• cycle is the len of repeat with leading zeroes if any
`Goulib.math2.``rational_str`(n, d)[source]
`Goulib.math2.``rational_cycle`(num, den)[source]

periodic part of the decimal expansion of num/den. Any initial 0’s are placed at end of cycle.

`Goulib.math2.``tetrahedral`(n)[source]
Returns: int n-th tetrahedral number https://en.wikipedia.org/wiki/Tetrahedral_number
`Goulib.math2.``sum_of_squares`(n)[source]
Returns: 1^2 + 2^2 + 3^2 + … + n^2 https://en.wikipedia.org/wiki/Square_pyramidal_number
`Goulib.math2.``pyramidal`(n)
Returns: 1^2 + 2^2 + 3^2 + … + n^2 https://en.wikipedia.org/wiki/Square_pyramidal_number
`Goulib.math2.``sum_of_cubes`(n)[source]
Returns: 1^3 + 2^3 + 3^3 + … + n^3 https://en.wikipedia.org/wiki/Squared_triangular_number
`Goulib.math2.``bernouilli_gen`(init=1)[source]

generator of Bernouilli numbers

Parameters: init – int -1 or +1.
• -1 for “first Bernoulli numbers” with B1=-1/2
• +1 for “second Bernoulli numbers” with B1=+1/2
`Goulib.math2.``bernouilli`(n, init=1)[source]
`Goulib.math2.``faulhaber`(n, p)[source]

sum of the p-th powers of the first n positive integers

Returns: 1^p + 2^p + 3^p + … + n^p https://en.wikipedia.org/wiki/Faulhaber%27s_formula
`Goulib.math2.``is_happy`(n)[source]
`Goulib.math2.``lychrel_seq`(n)[source]
`Goulib.math2.``lychrel_count`(n, limit=96)[source]

number of lychrel iterations before n becomes palindromic

Parameters: n – int number to test limit – int max number of loops. default 96 corresponds to the known most retarded non lychrel number there are palindrom lychrel numbers such as 4994
`Goulib.math2.``is_lychrel`(n, limit=96)[source]
Warning: there are palindrom lychrel numbers such as 4994
`Goulib.math2.``polygonal`(s, n)[source]
`Goulib.math2.``triangle`(n)[source]
Returns: nth triangle number, defined as the sum of [1,n] values. http://en.wikipedia.org/wiki/Triangular_number
`Goulib.math2.``triangular`(n)
Returns: nth triangle number, defined as the sum of [1,n] values. http://en.wikipedia.org/wiki/Triangular_number
`Goulib.math2.``is_triangle`(x)[source]
Returns: True if x is a triangle number
`Goulib.math2.``is_triangular`(x)
Returns: True if x is a triangle number
`Goulib.math2.``square`(n)[source]
`Goulib.math2.``pentagonal`(n)[source]
Returns: nth pentagonal number https://en.wikipedia.org/wiki/Pentagonal_number
`Goulib.math2.``is_pentagonal`(n)[source]
Returns: True if x is a pentagonal number
`Goulib.math2.``hexagonal`(n)[source]
Returns: nth hexagonal number https://en.wikipedia.org/wiki/Hexagonal_number
`Goulib.math2.``is_hexagonal`(n)[source]
`Goulib.math2.``heptagonal`(n)[source]
`Goulib.math2.``is_heptagonal`(n)[source]
`Goulib.math2.``octagonal`(n)[source]
`Goulib.math2.``is_octagonal`(n)[source]
`Goulib.math2.``partition`(n)[source]

The partition function p(n)

gives the number of partitions of a nonnegative integer n into positive integers. (There is one partition of zero into positive integers, i.e. the empty partition, since the empty sum is defined as 0.)

`Goulib.math2.``partitionsQ`(n, d=0)[source]
`Goulib.math2.``get_cardinal_name`(num)[source]

Get cardinal name for number (0 to 1 million)

`Goulib.math2.``abundance`(n)[source]
`Goulib.math2.``is_perfect`(n)[source]
Returns: -1 if n is deficient, 0 if perfect, 1 if abundant https://en.wikipedia.org/wiki/Perfect_number,
`Goulib.math2.``number_of_digits`(num, base=10)[source]

Return number of digits of num (expressed in base ‘base’)

`Goulib.math2.``chakravala`(n)[source]

solves x^2 - n*y^2 = 1 for x,y integers

`Goulib.math2.``factorialk`(n, k)[source]

Multifactorial of n of order k, n(!!…!).

This is the multifactorial of n skipping k values. For example,
factorialk(17, 4) = 17!!!! = 17 * 13 * 9 * 5 * 1
In particular, for any integer `n`, we have
factorialk(n, 1) = factorial(n) factorialk(n, 2) = factorial2(n)
Parameters: n – int Calculate multifactorial. If n < 0, the return value is 0.

:param k : int Order of multifactorial. :return: int Multifactorial of n.

`Goulib.math2.``factorial2`(n)[source]
`Goulib.math2.``factorial_gen`(f=<function <lambda>>)[source]

Generator of factorial :param f: optional function to apply at each step

`Goulib.math2.``binomial`(n, k)[source]

binomial coefficient “n choose k” :param: n, k int :return: int, number of ways to chose n items in k, unordered

`Goulib.math2.``choose`(n, k)

binomial coefficient “n choose k” :param: n, k int :return: int, number of ways to chose n items in k, unordered

`Goulib.math2.``ncombinations`(n, k)

binomial coefficient “n choose k” :param: n, k int :return: int, number of ways to chose n items in k, unordered

`Goulib.math2.``binomial_exponent`(n, k, p)[source]
Returns: int largest power of p that divides binomial(n,k)
`Goulib.math2.``log_factorial`(n)[source]
Returns: float approximation of ln(n!) by Ramanujan formula
`Goulib.math2.``log_binomial`(n, k)[source]
Returns: float approximation of ln(binomial(n,k))
`Goulib.math2.``ilog`(a, b, upper_bound=False)[source]

discrete logarithm x such that b^x=a

Parameters: a,b – integer upper_bound – bool. if True, returns smallest x such that b^x>=a x integer such that b^x=a, or upper_bound, or None

https://en.wikipedia.org/wiki/Discrete_logarithm

`Goulib.math2.``angle`(u, v, unit=True)[source]
Parameters: u,v – iterable vectors unit – bool True if vectors are unit vectors. False increases computations float angle n radians between u and v unit vectors i
`Goulib.math2.``sin_over_x`(x)[source]

numerically safe sin(x)/x

`Goulib.math2.``slerp`(u, v, t)[source]

spherical linear interpolation

Parameters: u,v – 3D unit vectors t – float in [0,1] interval vector interpolated between u and v
`Goulib.math2.``proportional`(nseats, votes)[source]

assign n seats proportionaly to votes using the https://en.wikipedia.org/wiki/Hagenbach-Bischoff_quota method

Parameters: nseats – int number of seats to assign votes – iterable of int or float weighting each party list of ints seats allocated to each party
`Goulib.math2.``triangular_repartition`(x, n)[source]

divide 1 into n fractions such that:

• their sum is 1
• they follow a triangular linear repartition (sorry, no better name for now) where x/1 is the maximum
`Goulib.math2.``rectangular_repartition`(x, n, h)[source]

divide 1 into n fractions such that:

• their sum is 1
• they follow a repartition along a pulse of height h<1
`Goulib.math2.``de_bruijn`(k, n)[source]

De Bruijn sequence for alphabet k and subsequences of length n.

https://en.wikipedia.org/wiki/De_Bruijn_sequence

`Goulib.math2.``mod_inv`(a, b)[source]
`Goulib.math2.``mod_div`(a, b, m)[source]
Returns: x such that (b*x) mod m = a mod m
`Goulib.math2.``mod_fact`(n, m)[source]
Returns: n! mod m
`Goulib.math2.``chinese_remainder`(m, a)[source]

http://en.wikipedia.org/wiki/Chinese_remainder_theorem

Parameters: m – list of int moduli a – list of int remainders smallest int x such that x mod ni=ai
`Goulib.math2.``mod_binomial`(n, k, m, q=None)[source]

calculates C(n,k) mod m for large n,k,m

Parameters: n – int total number of elements k – int number of elements to pick m – int modulo (or iterable of (m,p) tuples used internally) q – optional int power of m for prime m, used internally
`Goulib.math2.``baby_step_giant_step`(y, a, n)[source]

solves Discrete Logarithm Problem (DLP) y = a**x mod n

`Goulib.math2.``mod_matmul`(A, B, mod=0)[source]
`Goulib.math2.``mod_matpow`(M, power, mod=0)[source]
`Goulib.math2.``matrix_power`(M, power, mod=0)
`Goulib.math2.``mod_sqrt`(n, p)[source]

modular sqrt(n) mod p

`Goulib.math2.``mod_fac`(n, mod, mod_is_prime=False)[source]

modular factorial : return n! % modulo if module is prime, use Wilson’s theorem https://en.wikipedia.org/wiki/Wilson%27s_theorem

`Goulib.math2.``pi_digits_gen`()[source]

generates pi digits as a sequence of INTEGERS ! using Jeremy Gibbons spigot generator

`Goulib.math2.``pfactor`(n)[source]

Helper function for sprp.

Returns the tuple (x,y) where n - 1 == (2 ** x) * y and y is odd. We have this bit separated out so that we don’t waste time recomputing s and d for each base when we want to check n against multiple bases.

`Goulib.math2.``sprp`(n, a, s=None, d=None)[source]

Checks n for primality using the Strong Probable Primality Test to base a. If present, s and d should be the first and second items, respectively, of the tuple returned by the function pfactor(n)

`Goulib.math2.``jacobi`(a, p)[source]

Computes the Jacobi symbol (a|p), where p is a positive odd number. :see: https://en.wikipedia.org/wiki/Jacobi_symbol

`Goulib.math2.``pollardRho_brent`(n)[source]

Brent’s improvement on Pollard’s rho algorithm.

Returns: int n if n is prime

otherwise, we keep chugging until we find a factor of n strictly between 1 and n. :see: https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm

`Goulib.math2.``pollard_pm1`(n, B1=100, B2=1000)[source]

Pollard’s p+1 algorithm, two-phase version.

Returns: n if n is prime; otherwise, we keep chugging until we find a factor of n strictly between 1 and n.
`Goulib.math2.``mlucas`(v, a, n)[source]

Helper function for williams_pp1(). Multiplies along a Lucas sequence modulo n.

`Goulib.math2.``williams_pp1`(n)[source]

Williams’ p+1 algorithm. :return: n if n is prime otherwise, we keep chugging until we find a factor of n strictly between 1 and n.

`Goulib.math2.``ecadd`(p1, p2, p0, n)[source]
`Goulib.math2.``ecdub`(p, A, n)[source]
`Goulib.math2.``ecmul`(m, p, A, n)[source]
`Goulib.math2.``factor_ecm`(n, B1=10, B2=20)[source]

Factors n using the elliptic curve method, using Montgomery curves and an algorithm analogous to the two-phase variant of Pollard’s p-1 method. :return: n if n is prime otherwise, we keep chugging until we find a factor of n strictly between 1 and n

`Goulib.math2.``legendre`(a, p)[source]

Functions to comptue the Legendre symbol (a|p). The return value isn’t meaningful if p is composite :see: https://en.wikipedia.org/wiki/Legendre_symbol

`Goulib.math2.``legendre2`(a, p)[source]

Functions to comptue the Legendre symbol (a|p). The return value isn’t meaningful if p is composite :see: https://en.wikipedia.org/wiki/Legendre_symbol